Combining Logic and Large Language Models for
Assisted Debugging and Repair of ASP Programs

Ricardo Brancas
INESC-ID/IST - Universidade de Lisboa
Lisbon Portugal
ricardo.brancas @tecnico.ulisboa.pt

Abstract—Logic programs are a powerful approach for solving
NP-Hard problems. However, their declarative nature poses
significant challenges in debugging. Unlike procedural paradigms,
which allow for step-by-step inspection of program state, logic
programs require reasoning about logical statements for fault
localization. This complexity is especially significant in learning
environments due to students’ inexperience.

We introduce FormHe, a novel tool that integrates logic-based
techniques with Large Language Models (LLMs) to detect and
correct issues in Answer Set Programming submissions. FormHe
consists of two main components: a fault localization module and
a program repair module. First, the fault localization module
identifies specific faulty statements in need of modification. Next,
FormHe applies program mutation techniques and leverages
LLMs to repair the flawed code. The resulting repairs are then
used to generate hints that guide students in correcting their
programs.

Our experiments with real buggy programs submitted by
students show that FormHe accurately detects faults in 94%
of cases and successfully repairs 58% of incorrect submissions.

Index Terms—Fault Localization, Program Repair, Large
Language Models, Answer Set Programming.

I. INTRODUCTION

Finding bugs in logic programs can be a difficult task.
Common techniques such as step-by-step execution and debug-
printing cannot be used since there is no way to analyze
the control and data flows of programs. This challenge is
even more notable for novice programmers who are still
learning. Although some previous attempts to help Answer
Set Programming (ASP) users have been proposed [1], these
assume a high level of interaction [2] and intuition [3] that are
not common among novice programmers such as students in
a learning context. Therefore, students primarily use trial and
error for debugging since there are no fully automatic tools to
help them find the specific parts of the program that are buggy.
These hardships can make ASP and declarative programming,
in general, difficult to master. In this paper, we propose an
automatic feedback tool for Answer Set Programming that
helps students find and correct bugs in their programs.
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Fig. 1: Example of a graph, with a vertex cover marked in
bold consisting of nodes 1 and 4.

The k-vertex cover problem consists in finding a subset
S of the vertices such that for all edges (u,v) either u or
v is in that subset, and the size of S is at most k. For the
graph in Figure 1, {1,4} constitutes a vertex cover of size 2.
The following program is a student submission that attempts
to solve this problem in ASP. The graph is defined by e/ 2,
a predicate that indicates the existence of an edge between
its arguments (implicitly vertices of the graph), while k is a
constant that indicates the upperbound on the size of subset S.
The student should use the predicate sel/1 to indicate which
vertices were selected.

1 v(X) := e(X, _).

2 v(X) = e(_, X).

3 k { sel(X) : v(X) } k.

4 :— not sel(X), not sel(Y), e(X,Y).

The first two lines extract the vertex information from the
edge predicate, while the third line tells us we want to select x
vertices. The fourth line excludes any solutions where there is
an edge between x and v, but neither x nor v are selected.
This program has a bug on the third line: while the problem
specification says that x is an upper bound, the student wrote
it so that exactly x vertices are selected. Our goal is to
automatically identify such bugs and provide students with
hints on how to solve them. For this program, the following
is a possible hint, where “?” represents the part that the user
should replace:

3 7 { sel(X) v(X) } k.

FormHe comprises two modules: the fault localizer, which
finds coarse-grained bugs at the line level, and the repair
module, which finds corrections for the programs and derives
specific hints from those corrections.



The fault localizer combines several sources of information
to identify faulty lines. The MSICS approach uses logic to
determine lines that must be modified or removed to fix a
specific failing test. The Line Matcher uses a similarity metric
to find bugs by comparing the student submission with a
reference implementation. Lastly, we also use a fine-tuned
Large Language Model (LLM) to find faulty lines.

The repair module also includes several approaches. First,
we use a fine-tuned LLM to find a correction. If that does
not succeed, we switch to a program synthesis-based mutation
enumerator. If a correction is found by either method, we create
a hint by replacing the modified parts of the program with
question marks “?”.

This paper makes the following scientific contributions:

e A new automated fault localizer for ASP that combines
logic-based methods with Large Language Models;

o A new automated repair procedure for ASP that includes
an LLM-based method and a program synthesis-based
method;

o The first fully automated tool with fault localization and
program repair for ASP that is deployable in an educa-
tional environment, providing automatic and personalized
hints to students.

II. PRIMER ON ASP

Answer Set Programming (ASP) [4] is a declarative pro-
gramming language, similar to Prolog [5] and Datalog [6]. ASP
has roots in knowledge representation, uses non-monotonic
reasoning, and is inspired by Prolog. The non-monotonic
semantics means that adding new premises might decrease
the set of inferred facts.

ASP programs are comprised of rules. Consider the rule
a :- b, ¢, not d. The left-hand side of a rule is called
the head, while the right-hand side is the body. A head is
comprised of an atom, while the body is comprised of a set
of literals. A literal is an atom, d (positive literal), or its
negation, not d (negative literal). This type of negation is
called default negation and means that literal not d is assumed
to hold unless atom d is derived to be true.

The intuitive reading of a rule is that if all the positive
literals in the body are true and all the negative literals are
satisfied, then the head is also true. If a rule has no body, it
is called a fact, and its head is always true. A rule without
the head is called an integrity constraint. Integrity constraints
filter candidate solutions, meaning the literals in its body must
not be jointly satisfied.

Computing a solution of an ASP program is done by finding
a stable model of the formula, called an answer set. The
first step is to ground the program, where all the variables in
the program are instantiated with specific uses. For example,
consider the rule b (x) :- a(x). and the facts a(1). a(2). .
After grounding, this rule would be replaced with the following
two rules: b(1) :- a(1l). b(2) :- a(2). If a program has
no negations, then its answer sets can be computed directly
from the ground program, similarly to Prolog. Otherwise, the
ASP solver attempts to find stable models of the formula. The
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Fig. 2: System diagram of FormHe’s fault localization module.
The [»> represents usage of the Clingo ASP solver.
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solver will guess an answer set, S, if S derives itself (it is
stable under derivation), then it is an answer set of the formula.
We refer to the literature for more details on ASP [7].

An answer set can also be projected over a set of predicates,
P. This projection essentially means removing all predicates
not in P from the answer set. Projected answer sets are helpful
when comparing different implementations since they allow us
to ignore auxiliary predicates.

III. FAULT LOCALIZATION

FormHe focuses on finding and correcting bugs in student
assignments. FormHe assumes the availability of one or more
test cases to test the student submissions. For instance, for the
vertex cover problem, these test cases would be the definitions
of the graphs to test on. Furthermore, like other verification
tools for education [8], [9], FormHe also requires a reference
implementation to check the correction of submissions. This
is not an issue in a classroom setting since teachers are (1)
experts and (2) usually already have model solutions for each
exercise.

FormHe must also know which predicates constitute the
solution of a problem (e.g., for the vertex cover example, it
would be the sel/1 predicate). Note that these predicates are
defined in the student’s assignment and do not limit the usability
of our approach. FormHe always projects the answer sets to
the solution predicates so that students can define any auxiliary
predicates in their programs. This section introduces our
fault localization methods, which involve identifying minimal
strongly inconsistent correction subsets, matching student and
reference implementations, and using a large language model-
based approach.

A. Verification

The overall architecture of FormHe’s fault localization
module is shown in Figure 2. The first step is verifying if
the student submission is correct. A submission is considered
correct if (1) all the answer sets it produces are answer sets
of the reference implementation and (2) if the reference im-
plementation generates at least one answer set, the submission
must also generate at least one answer set. This correctness
definition is flexible enough to allow students to add symmetry-
breaking constraints [10]. However, note that the reference
implementation must not use any additional constraints that



eliminate solutions so that it is “compatible” with all correct
student implementations, i.e., a valid answer set for the student
implementation must be an answer set of the reference.

If a submission is deemed incorrect, we get a set of extra
answer sets (answer sets of the student submissions that are
not answer sets of the reference implementation) and a set of
missing answer sets (answer sets of the reference implementa-
tion that are not answer sets of the student submission). Using
this information, we can identify which lines of the student
submission are faulty using Minimal Strongly Inconsistent
Correction Subsets (MSICSs).

B. Minimal Strongly Inconsistent Correction Subsets

A subformula ¢4 C ¢ is strongly inconsistent if ¢ is incon-
sistent and all the supersets ¢ of the subformula (¢ C ¢’ C ¢)
are also inconsistent. Given an inconsistent formula ¢ = ¢ A,
where ¢, is a set of hard constraints and ¢, is a set of soft
constraints, a Minimal Strongly Inconsistent Correction Subset
(MSICS) ¢, is a minimal set of soft constraints (¢. C ¢)
that need to be removed so that the remaining soft and hard
constraints are not strongly inconsistent. For the purpose of
fault localization in an ASP program, an MSICS is a set of
lines of the faulty program that must be removed or modified
because it is preventing the program from behaving correctly
for a given test case.

Consider the faulty student submission for the vertex cover
problem presented in the introduction. FormHe found a test

case for which this submission fails:

This test case specifies a vertex cover with a maximum size of
three for the simple graph shown. The student implementation
fails because it uses k as both an upper and lower bound for
the size of the cover when it should be just an upper bound.
Hence, the student submission does not output any answer set
for this test case. One of the missing answer sets iS sel (2)
since selecting just vertex 2 is a cover of the graph. Using this
information, we can compute an MSICS of the program.

Consider Figure 3. First, we turn each of the lines in the
student program into soft constraints |. Next, we specify the
test case @), and the missing answer set 9 as hard constraints.
From these soft and hard constraints, we can use an MSICS
algorithm [11] to compute a minimal set of lines of the program

that need to be removed or modified such that the missing
answer set 9 can become a solution for the test case @. More
details can be found in the appendix.

Due to the non-monotonicity of ASP, the MSICS approach
can sometimes fail to identify all the faulty lines in the program.
To overcome this, FormHe can combine the information from
the MSICS with supplemental sources of information that can
select other suspicious lines. Next, we introduce two alternative
fault localization methods.

1 #const k = 3.
2 e(l,2).

C. Large Language Models

Deep Learning models have proven to be a powerful tool
for fault localization in different domains [12]-[14]. One way

v(X) - e(X,_).

1 ’

2 v(X) :— e(_,X).

3 k { sel(X) v(X) } k.

4 :— not sel(X), not sel(Y), e(X,Y).
(a) Student submission.

1 v(X) :— e(X,_).

2 v(X) = e(_,X).

3 k { sel(X) v(X) } k.

4 :— not sel(X), not sel(Y), e(X,Y).

5 #const k = 3. Hard

6 e(1,2). 9

7 sel(2).

(b) Relaxed program.

Fig. 3: Student submission for the vertex cover problem before
and after relaxation.

to use LLMs for fault localization is to transform the model
into a classifier by replacing the last layer with a classification
head. This approach allows us to generate a score for each
line, indicating the likelihood that the line is faulty. While this
approach has the downside of requiring that the maximum
number of lines in the program be defined at training time,
this is not an issue for the small introductory ASP problems
we are targeting.

Our prompt template contains the problem name (e.g., graph
k-coloring), the reference implementation and the student
submission. The model has been fine-tuned to receive the
prompt and output a score between 0 and 1 for each line.
Lines with a score > 0.5 are considered faulty.

D. Line Matching

The Line Matching method finds lines in the student
submission that are very similar to lines in the reference
implementation yet have small differences. The intuition is that
if such lines exist, they are likely to be bugs. On the contrary,
very different lines are likely to be due to entirely different
implementation approaches instead.

The first step in Line Matching is parsing both implemen-
tations into FormHe’s internal Abstract Syntax Tree (AST)
representation. Step of Figure 4 shows an example of
this parsing step. Then, in step @, the AST is anonymized,
becoming an Anonymized Abstract Syntax Tree (AAST). This
is done because students might use different names for auxiliary
predicates and variables. Constants and the solution predicates
are not anonymized since they would be the same for both the
student and the reference implementation.

The last step, @, turns the AAST into a bag of nodes.
This representation is used since many syntax aspects for ASP
programs are order-independent (e.g., the order of the atoms in
the body of a rule). Furthermore, predicate and variable usages
become even more abstract since we cannot rely on the order
of the first appearance of each identifier. For example, consider
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Fig. 4: Process of transforming an ASP rule into a bag of
nodes.

the predicate color, which is used one time in the original
program. At first, it is anonymized into predicate pO since it
is the first predicate encountered in this line. Then, in the final
version, it shows simply as a predicate with two arguments
(p/2) that is used one time (p/2 | 1).

After computing the bag of nodes for all lines in both
programs, we compute the symmetric difference for each pair
of lines from one program to the other. This metric gives us the
nodes that need to be removed and/or added to transform one
line into another. Then, we create a bipartite graph between
the lines of the submission and the lines of the reference
implementation, where the weight of each edge is the previously
computed distance metric. Finally, we use a perfect matching
algorithm [15] to find a minimum cost pairing between the
lines of the submission and reference implementation. Matched
lines from the student submission with a small but non-empty
symmetric difference (by default < 3) are reported as likely
to be buggy.

E. Choosing a correct implementation

It is possible to build a large set of correct solutions
for each exercise by collecting correct student submissions
from previous course editions. The student’s solutions are
potentially different from the reference implementation and
can be exploited to improve the quality of the similarity-based
fault localization methods [8], namely the LLM approach and
the line matching approach. To achieve this, we use the core
technique of the line matching algorithm to compute a distance
metric (the total value of the matching) between the student
submission and each of the available correct implementations
for that problem. Then, we select the lowest distance correct
implementation and use it as a reference in the similarity-based
fault localization methods, improving their performance.

F. Combining Fault Localization Methods

To produce a more robust fault localizer, we combine the
different fault localization techniques presented in this section.
Figure 5 shows an overview of our combination and sorting
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’ LLM FL | LM FL |
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Fig. 5: Overview of how FormHe combines different fault
localization techniques.

Test Repaired
. > epaire:
Cases Verifier — e
Reference , ,
Implementation . Failed Failed
Repair Repair
Candidate Candidate
Student LLM Mutation Enumerator
Submission ﬁ Repair Enumerator Exhausted
ACS

Fig. 6: System diagram of FormHe’s repair module. The [»>
symbol represents usage of the Clingo ASP solver.

method. First, we collect all the MSICSs produced (CS1, CS2,
...). Then, we use the LLM fault localization approach to obtain
another set of faulty lines (LLM FL). For the rest of the process,
this set is treated as if it were an MSICS.

Next, we compute the set of suspicious lines using the
Line Matching approach. These lines are appended to all the
MSICSs (plus the LLM FL), resulting in Augmented Correction
Subsets (ACSs). Finally, we use the Line Scores from the LLM
Classifier to sort the ACSs, in order to choose which one to
present to the user and proceed with for the repair module.
Each ACS is ranked based on the sum of the scores of the
lines it contains, with ACSs with higher scores being ranked
first.

IV. PROGRAM REPAIR

The repair module takes the Augmented Correction Subset
(ACS) produced by the Fault Localizer and tries to modify it
to correct the original program. It is possible that the ACS
produced by the fault localizer is empty. This happens when
there are no incorrect rules (only missing rules) or when the
fault localizer is unable to identify them. If the ACS is empty,
FormHe attempts to extend the submitted program with new
lines while maintaining the original ones.

Figure 6 shows an overview of the Repair module. FormHe
possesses two ways to repair programs: a fine-tuned Large
Language Model (LLM) and a program mutation enumerator.
First, FormHe attempts to repair the program using the fine-
tuned LLM. This is done in a feedback loop where we attempt
to refine the answers provided by the LLM until we find a
correct repair. After a preset number of iterations of this loop,
if no repair has been found, FormHe falls back to the mutation-
based repair. In this second phase, the Mutation Enumerator



takes the original student submission and the ACS identified
by the fault localizer, and generates mutations of the identified
lines. As in the LLM Repair, this starts a feedback loop where
different repair candidates are enumerated until we either find
one that is correct or the enumerator runs out of possible
mutations.

The verification process is similar to assessing a student’s
submission for correctness. We replace the ACS in the student
submission with the repair candidate and check if all answer
sets of the resulting program are answer sets of the reference
implementation for all test cases. We also ensure that the
program generates at least one answer set for each input,
mirroring the behavior of the reference implementation. When
FormHe identifies a correction, it offers the student a hint in the
form of a program with holes where changes were introduced
to produce a repair. This hint is more precise than the ACS
produced by the fault localizer. A detailed example of how the
hints are produced can be found in Section V.

A. LLM Program Repair

Our LLM repair approach consists of using a fine-tuned
LLM to obtain candidate repairs of the ACS found during
fault localization. The model was fine-tuned on synthetic data
using an input prompt containing the name of the problem,
the reference implementation, the student submission and the
set of faulty lines (e.g., the ACS). As introduced in the Fault
Localization section, similarity-based methods can benefit from
having a more closely related correct implementation instead
of the reference solution initially produced by the faculty.
Hence, in the LLM-based repair, we replace the reference
implementation in the input prompt whenever a closer correct
implementation is available.

If the repair candidate produced by the LLM is incorrect,
FormHe enters a feedback loop where it runs fault localization
on that candidate and then tries to further repair it with the
LLM again. We do this for a preset number of times (3 by
default). If no correction is found, we fall to the mutation-based
repair approach.

B. Mutation Program Repair

The mutation-based repair technique finds repair candidates
by enumerating mutations of the ACS. FormHe uses program
synthesis to enumerate mutations and, like most enumeration-
based program synthesis tools, uses a Domain Specific Lan-
guage (DSL) to define the repair search space. FormHe’s DSL
includes the most common ASP operators, such as Boolean
operators and aggregate rules. Furthermore, it also takes into
account information from the student submission, such as
predicate and variable names. Figure 7 shows the base DSL
supported by FormHe. The three productions not defined in this
figure (predicate, constant, and variable) are dependent on
the user submission and on the ACS. The predicate production
can be any predicate used in the student submission, as well
as any of the solution predicates for that instance. FormHe
ensures that the arity of each predicate is respected. Likewise,
constant can be any constant used in the user submission.

stmt — stmt (head?, atom * )

head — aggregate (term?, atom, atom, term?)
| atom

atom — predicate (pred_term %) | not (atom)

| classical_not (atom)

| eq(term, term) | neq(term, term)
| 1t (term, term) | le (term, term)

| gt (term, term) | ge (term, term)

| pool (atom, atom)

pred_term — term | interval | _

term — 0 | 1] constant | variable
| add (term, term) | sub (term, term)
| mul (term, term) | div (term, term)
| abs (term)

interval — interval (term, term)

Fig. 7: FormHe’s base Domain Specific Language.
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Fig. 8: An ACS with a single statement, its AST representation,
and the SMT encoding for that tree.

Finally, variable can be any of the variables used in the ACS
as well as completely new variables.

The first step in the mutation-based repair process is to
convert the ACS into FormHe’s Domain Specific Language and
create an AST. Then, the AST is encoded into a Satisfiability
Modulo Theories (SMT) formula [16]-[21]. Figure 8 shows an
example of an ACS and respective AST and SMT encoding.
Relaxing each of the equalities in this formula allows us to
use an SMT solver to enumerate program mutations. For each
node n; we introduce a relaxation variable r;. For example,
relaxing no = X would become (ne = X V ry) and allow us
to enumerate :- sel(Y), not sel(Y), e(X,Y)..

To reduce the number of enumerated programs that are
either semantically incorrect ASP programs or that are math-
ematically equivalent, we enforce several restrictions that
prune enumerated programs. These include symmetry breaking



for commutative operations, ignoring neutral and absorbing
elements for addition and multiplication, and several other
optimizations related to ASP semantics, such as pruning invalid
constructions of rule heads.

V. FORMHE IN THE CLASSROOM

In the last two years, master’s-level Automated Reasoning
class students have submitted their exercise solutions for
ASP programs. However, the only feedback was checking
if the submitted programs passed all test cases. No hints or
personalized feedback was provided. This year, FormHe using
the techniques described in this paper will be tested by students
for the first time. In this section, we describe and show an

example of how users interact with FormHe in the classroom.

Students interact with FormHe through GITSEED [22], an
open-source tool that allows teachers to set up custom automatic
feedback on Git commits. We create an initial repository for
each student containing each exercise’s statement and skeleton
file. GITSEED will then watch the repository for commits on
the skeleton files and trigger FormHe whenever one happens.

Consider as an example the following program committed
by a student as a solution for the k-coloring problem:

1 color(l..k).

2 node(N) :— e(_, N).

3 node(N) :— e(N, _).

4 assign(N,C) :- node(N), color(C).

5 :— e(N, M), assign(N,C), assign(M,C).

After being triggered by GITSEED, FormHe evaluates the
student program against the test cases. For each failing test
case, we show the student the input as well as some of the
missing/extra answer sets. The following block shows the
evaluation output for the student program:

e ~

Your program has failed test case 1:

#const k = 3.

e(a, b). e(a, ¢). e(a, d). e(c, d).

Your solution is overconstrained and does not produce any solutions
for this input. Examples of correct answer sets:

assign(a,3) assign(b,1l) assign(c,1l) assign(d, 2)
assign(a,3) assign(b,2) assign(c,1l) assign(d, 2)
assign(a,3) assign(b,2) assign(c,2) assign(d, 1)
assign(a,3) assign(b,1l) assign(c,2) assign(d, 1)
assign(a,2) assign(b,3) assign(c,3) assign(d, 1)

[tests 2 to 4 omitted for brevity]

You have passed 0 test(s) and failed 4 test(s) .

\ J

Additionally, FormHe can detect if the student has used
a predicate in the body of some rule that does not occur
in any head (such predicate will never be satisfied and is
usually a mistake). For example, if that happens for predicate
my_predicate/2 , the following line is also added to the
output:

The following predicates are used in a rule but are never generated:
my_predicate/2

Next, FormHe executes the fault localization procedure and,
if any lines are identified, produces the following information:

Suggested lines where bug is likely located:

[4] assign (N, C) :— node(N), color(C).

At this point, while FormHe starts the repair procedure, GIT-
SEED will push the fault localization output to the student’s Git
repository in a Markdown file, along with a message indicating
that FormHe is searching for a correction hint and will update
the file shortly. When the repair procedure terminates, FormHe
will create a correction hint. Alternatively, if the timeout is
reached, it informs that no hint was found. GITSEED then
updates the feedback file on the students’ repository. In this
example, the student incorrectly used a regular rule when
they needed an aggregate rule. FormHe successfully identified
therepah 1 { assign(N, C) : color(C) } 1 :- node(N).
and generated the following fix suggestion:

Fix Suggestion

You can try replacing the line(s) above with the following (the ”?”
are holes you should fill in or remove):

? :— node(N), 2.

As shown in this section, FormHe has several types of
feedback with different characteristics:

« Information about failing test cases is always available
but can be hard to utilize effectively by students with little
experience;

« Fault localization information is more useful but is only
available if FormHe can identify the bugs;

o Fix suggestions are more precise but depend on finding a
correction for the program and often take longer to obtain.

FormHe uses GITSEED to make interaction with users

as simple as possible and provides feedback as it becomes
available.

VI. EVALUATION

To properly evaluate FormHe’s capabilities, we used pro-
grams from students taking a master-level class on Automated
Reasoning. Over two years, we collected 115 programs
submitted by students on 5 different assignments. In these
assignments, students encoded classical graph problems such as
graph coloring and vertex cover, as well as set problems such as
pairwise disjoint sets and set cover. Of those 115 instances, we
received 63 correct submissions and 52 semantically incorrect
submissions.

To better evaluate our tool, we also created synthetic
benchmarks. These benchmarks were generated by randomly
introducing 1 to 8 mutations in the correct submissions,
including some of the most common bug types, such as using a
wrong predicate name or forgetting a constraint. We created 95k



instances for training the different machine-learning models
and 500 instances for evaluation.
This section answers the following research questions:

QL.
Q2.

Q3.

We evaluated our tool using an Intel Xeon Silver 4210R
and imposed a limit of 10 minutes (wall clock time) and
60GB of RAM per instance. Limits were strictly imposed
using Runsolver [23]. FormHe is implemented in Python and
uses the Clingo ASP grounder and solver [24] version 5.6.2.
For the enumeration of program mutations, FormHe uses a
modified version of the Trinity framework [16]. Fine-tuning
and evaluation of the different LLMs was performed using 5x
Nvidia RTX A4000. FormHe’s source code, data and logs are
available as supplemental material.

How effective are the fault localization approaches?
Can we improve the fault localization through a combi-
nation of approaches?

How effective is the program repair?

Ql: How effective are the different fault localization ap-
proaches?

We start by evaluating the fault localization approaches
in FormHe. Note that while the different fault localization
approaches are intended to be used together, they can also be
used in isolation. Table I shows the percentage of instances
where each approach correctly identified the faults for real and
synthetic instances.

a) MSICS Method: The MSICS fault localization method
has the largest number of Exact Faults Identified out of the
two traditional methods. However, due to the non-monotonicity
of ASP, this method produces some unexpected results, with a
large number of non-identified faults and wrong identifications.
For instance, when the body of a rule has a bug and is never
satisfied, that rule does not contribute to the logical behavior
of the program and will thus not be identified by this method.
Even so, Table I shows that this method correctly identifies
at least one fault in a large number of instances (64%) and
provides a good baseline.

b) Line Matching: The line matching algorithm exploits
similarities between the student submission and the reference
implementation. While this approach may be less helpful for
complex programs with many ways to solve the problem,
it performs well for simple instances such as those used
in introductory ASP classes. The large number of wrong
identifications for synthetic instances shown in Table I is
due to these instances using a normalized representation
which can sometimes cause false positives with the reference
implementation (for example, 0 {...} 1 is syntactically
different but equivalent to {...} 1).

c) Large Language Models: We use open-access LLMs
with a small number of parameters for three reasons: (1) closed-
access models are prohibitive due to cost and students’ data
privacy concerns, (2) models with a large number of parameters
require large amounts of computing power and take longer
to produce answers, which is undesirable in a classroom, and
(3) since we transform the models into classifiers with few
outputs, too many parameters can be detrimental and lead to

overfitting. Furthermore, we use fine-tuned models due to two
major issues: (1) many models have trouble reasoning about
ASP, likely due to a small proportion of this language in their
training sets, and (2) some models have trouble respecting
specific output formats which makes it hard to automatically
extract the relevant parts of the answer for verification and/or
use in other FormHe modules. These issues can be partially
alleviated by using large model sizes, but, as explained, that is
undesirable for FormHe’s intended use.

We fine-tuned four state-of-the-art models to evaluate our
LLM fault localization approach. We chose two models
with 2B parameters: Gemma [25] and CodeGemma [26], a
model with 3B: StarCoder 2 [27], and a model with 4B: Phi
3 [28]. These models were fine-tuned using 95k synthetically
generated incorrect programs. We used Parameter Efficient Fine
Tuning [29] (in particular Low-Rank Adaptation (LoRa) [30])
to decrease the memory requirements during training.

Table I shows the results for different models for real and
synthetic instances. Note that the synthetic results are for the
500 evaluation instances and not for the 95k used for training.
Of the four models, Gemma performed the best overall. While
Phi 3 performs better than Gemma for synthetic instances, the
same is not true for real instances. This indicates that Phi 3
has likely overfitted the training data. Furthermore, the overall
disparity between the results for synthetic and real instances is
expected since the models were also fine-tuned using synthetic
instances. Even with these caveats, the results for real instances
are generally better than the other fault localization approaches.

d) Related Methods: To compare FormHe with previous
approaches, we also implemented the core DWASP [2] fault
localization method (excluding the interactive portion) in our
tool. The results for this method can be found as DWASP?
in Table I. The DWASP' approach is very similar to the
MSICS method, and this shows in the results, with comparable
performance for these approaches. Even though the DWASP?
slightly outperforms the MSICS method in real instances,
replacing it in FormHe’s default configuration results in worse
performance, suggesting that DWASP' has a greater overlap
with the other methods.

Q2: Can we improve the fault localization through a combina-
tion of approaches?

Table I shows the results for a configuration of FormHe
without using LLMs (“FormHe w/o LLM”) and for the
recommended configuration using the Gemma 2B model
(“FormHe (with Gemma 2B)”). Combining the MSICS and
Line Matching methods provides a significant performance
improvement compared to the isolated approaches. Furthermore,
in deployment scenarios capable of using deep learning, adding
the LLM fault localization method provides a further boost,
with the recommended configuration finding all faults in 85%
of real submissions and at least one of the faulty lines in 94%.
Even though FormHe has a much larger number of “Superset
Faults Identified” cases than other approaches, for 78% of
those cases, only 1 extra line was identified. This means that



TABLE I: Results for different fault localization methods for real and synthetic instances. Label meanings: “Exact Faults
Identified” — the method identified all the faulty lines and no others; “Superset Faults Identified” — the method identified all
the faulty lines, but also some others; “Some Faults Identified” — the method identified some of the faults, but not all; “Faults
Not Identified” — the program had faulty lines but the method was unable to identify them; “Wrong Identification” — the
method only identified lines as faulty that were actually correct. The first column shows the sum of the Exact, Superset, and
Some Faults Identified columns and represents the percentage of instances where at least one fault was found in the program.

Exact + Superset + Some | Exact Faults  Superset Faults ~ Some Faults Fault Not Wrong
Faults Identified Identified Identified Identified Identified Identification
Real Synth. Real Synth. Real Synth. Real Synth. Real Synth. Real Synth.
MSICS 63.5% 46.0% \ 40.4% 24.2% 00% 04% 23.1%214% 23.1%42.6% 13.5% 11.4%
Line Matching | 69.2% 48.2% | 34.6% 202% 11.5% 3.8% 23.1%242% 25.0%40.4% 5.8% 11.4%
Gemma 2B 90.4%  100.0% 59.6% 99.6% 17.3% 0.0% 13.5% 04%  5.8% 0.0% 3.8% 0.0%
CodeGemma 2B 84.6% 100.0% 50.0% 992% 192% 0.0% 15.4% 0.8% 9.6% 0.0% 5.8% 0.0%
StarCoder2 3B 65.4% 99.2% 26.9% 96.6% 77% 02% 30.8% 24% 26.9% 0.6% 7.7% 0.2%
Phi 3 mini 84.6% 100.0% 51.9% 100.0% 13.5% 0.0% 19.2% 0.0% 9.6% 0.0% 5.8% 0.0%
FormHe w/o LLM 82.7% 69.8% 442% 322% 13.5% 88% 25.0%288% 11.5% 19.8% 5.8% 10.4%
— FormHe (with Gemma 2B) 94.2% 97.8% 61.5% 77.6% 23.1% 17.8% 9.6% 2.4% 1.9% 0.0% 3.8% 2.2%
FormHe w/o Impl. Choosing 92.4% 98.0% 63.5% 71.4% 212% 25.8% 7.7% 0.8% 1.9% 0.0% 5.8% 2.0%
DWASP' ‘ 69.3% 31.0% ‘ 46.2% 19.6% 1.9% 0.6% 21.2%10.8% 30.8% 62.8% 0.0% 6.2%
FormHe is still helping the student focus on the problematic 60% i
. el
section of the program. £ 50% :
We also explored the impact of using the closest correct im- & 0% |
plementation for the Line Matching and LLM methods instead g 0% :
of the reference implementation. For a given instance, we only = ;OW !
consider previously submitted correct solutions, simulating real- z " :
time usage of FormHe. The line labeled “FormHe w/o Impl. & 10% .
Choosing” shows the effects of disabling this feature compared 0% , : , ‘ —
5 10 30 60 180 600

with the default configuration of FormHe. Disabling the feature
has a small impact, decreasing the number of instances in which
we find at least one fault and raising the number of Wrong
Identifications.

Our combined approach can successfully incorporate the
different fault localization methods, obtaining the best overall
results of all techniques for real instances. FormHe can
provide students actionable feedback for the majority of faulty
submissions. Furthermore, even for submissions where we
cannot identify the fault, we can still inform the student that
the program is incorrect and provide failing test cases with
missing and extra answer sets.

Q3: How effective is the program repair?

Next, we evaluate the performance of the repair module
using the best-performing fault localization method (FormHe
with Gemma 2B). Figure 9 shows how many real instances
can be repaired under x seconds for different configurations of
FormHe. Times shown in this plot include the time for the fault
localizer (5 seconds on average). The model used for the LLM
and Combined configurations was CodeGemma 7B fine-tuned
using LoRa and 4 bit quantization. We used a larger number
of parameters for repair than for fault localization since the
repair task is more complex.

The “Mutation Repair” and “LLM Repair lines” refer to
using each of the two repair techniques in isolation. The LLM
approach has a much better repair rate at 56% compared to

Time (s)

—®— Mutation Repair - LLM Repair

Combined Repair without

—#- Combined Repair —— Impl. Choosing

Fig. 9: Percentage of submissions (i.e., real instances) repaired
at each point in time.

19% for the mutation-based. In part, this happens because
the mutation method’s default configuration has been tuned
towards harder instances. While this reduces the overall number
of mutation-based repairs, it increases the contribution to the
combined approach described next.

The combined approach slightly improves over using just
the LLM repair, with 58% repaired instances. Even though
mutation-based repair makes a small contribution to the
combined approach, it is not dependent on having synthetic
instances and performing computationally intensive fine-tuning
of models. It can thus be used in low-resource situations and
provides a safe fallback when the LLM fails. Observe that
almost all repairs are found in 1 minute or less. This is ideal
for classroom situations since students should not wait a long
time for feedback.

The Combined Repair configuration uses the closest correct
implementation available in the LLM input prompt. The impact



of disabling this feature is shown in Figure 9 as “Combined
Repair without Impl. Choosing”. This feature has a larger
impact on repair performance than on fault localization with
a 4pp. drop in repair rate when it is disabled. There is also
a large impact on the repair time. Using the closest solution
takes at most about 2 minutes versus 8§ minutes when using
the original reference solution.

Although not shown in the figure, synthetic instances show
the same behavior as in fault localization: the LLM approach
performs much better at synthetic instances than real instances
(97% vs 56%), while the traditional method (mutation-based)
performs similarly on the two types of instances (20% vs 19%).
This can be explained by the LLM having been trained on
synthetic instances (although not the same ones as used for
evaluation). We also fine-tuned other models for the repair task
besides CodeGemma 7B. These are: 8-bit quantized CodeQwen
1.5 7B [31] with 48% combined repair rate for real instances,
Phi 3 mini with 40% and CodeGemma 2B with 37%.

FormHe’s repair rate depends significantly on the fault
localization outcome. Looking at all 552 instances (real +
synthetic), FormHe can repair 96% of the ones with Exact
Faults Identified, 92% of Superset Faults Identified and 71% of
Some Faults Identified. This shows that better fault localization
leads to better repair rates and also that it is preferable to
identify a superset of the faulty lines than to only identify
some of the faults. Furthermore, FormHe can also repair 50%
of the instances where the faults were Not Identified or Wrongly
Identified. This occurs in instances where the faults are missing
ASP rules. Although the fault localization module does not
always detect this, the repair module can sometimes solve the
problem by synthesizing new rules.

VII. RELATED WORK

A. Verification and Similarity of ASP

While several techniques for formal equivalence checking of
Answer Set Programs have been proposed [32]-[34], FormHe
uses testing-based verification for two main reasons: (1) many
of these techniques do not directly support all ASP features
(e.g., aggregates) and require program transformations and/or
grounding which increase complexity and make giving feedback
harder, and (2) FormHe calls the verification procedure very
often to test if the candidate repairs are correct or not, so it
needs to be as fast as possible. Furthermore, since the faculty
write the tests, they can ensure the inputs expose all common
corner cases.

Techniques using similarity of ASP rules have previously
been used for plagiarism detection in Kato [35]. Kato’s goal is
to detect camouflage techniques such as changing the formatting
of the source code or permuting rules/atoms in the program.
While FormHe’s line matching and Kato share underlying
ideas, our goal is actually the opposite: we want to ignore any
“irrelevant” differences between programs and find semantic
bugs.

B. Fault Localization

Work on fault localization for ASP has been ongoing.
Shchekotykhin [1] presents an interactive tool for ASP fault
localization that iteratively asks the user if a given set of atoms
should be part of some answer set. Based on this information,
the tool refines the set of possibly faulty rules until it finds the
correct one. Users of this tool must be able to reason about
the semantics of ASP, which makes it challenging to use in an
education setting where students are just learning declarative
languages.

SeaLion [3] is an ASP debugger which allows users to
compute answer sets step-by-step. Initially, no rules are active,
and the answer set is empty. Then, at each step, users can
select a new rule to be active, producing changes in the current
answer set. This allows users to determine when the answer
set deviates from what is expected. This tool requires some
intuition to be used effectively since users must choose the
correct rules at each step and know when the computation has
“gone wrong”. Sealion also includes Ouroboros [36], [37], a
tool which allows users to compute why a given interpretation
is not an answer set of the program by using a meta interpreter.
In this plugin, users must choose an interpretation that correctly
exposes the bug, which can be challenging if the program is
overconstrained instead of underconstrained.

DWASP [2] is a debugger based on the WASP solver [38]
that requires an input (e.g., an example graph for the vertex
cover problem), and a test case (a set of atoms that should be
part of some answer set but are not). DWASP then computes
a minimal set of lines that make the test case incoherent with
the input. Although the reason of incoherence is minimal from
a logic standpoint, it usually includes lines that are not faulty.
As such, DWASP implements an interactive debugger that
allows users to refine the reason for incoherence. Although
this approach is more automated than previous work, it still
requires users to (1) select a good input and test case that
exposes the fault and (2) refine the set of possible lines by
answering questions that require complex reasoning.

C. Deep Learning Fault Localization

Recently, many approaches to fault localization using deep
learning have been proposed. DeepFL [12] uses a deep learning
model to combine the results of many fault localization
techniques (such as mutation-based, textual-similarity, among
others) into a single suspiciousness score for each line.

TRANSEFER [13] uses bidirectional LSTM-based classifiers
to compute deep semantic features of the buggy programs.
Then, it uses a different model to combine these features with
spectrum and mutation-based metrics and produce suspicious-
ness scores for each program line.

LLMAO [14] uses a two-step approach where a pre-trained
LLM is used to obtain a representation for each program line
(the model’s hidden state). Then, a bidirectional transformer
model is used to transform the sequence of representations into
a suspiciousness score for each line. This two-step approach
is used to avoid the LLM having to “remember” the whole



program in the hidden state of the last token, which could
make it challenging to use with very large programs.

D. Program Repair

Automated Program Repair (APR) encompasses techniques
aimed at automatically fixing bugs in programs, spanning from
imperative [39], [40] to declarative paradigms [41]-[43]. To the
best of our knowledge, FormHe is the first automated program
repair tool for ASP. However, work has been ongoing in other
declarative languages, such as Alloy.

ARepair [41] and ICEBAR [42] are two repair tools for Alloy
that use AlloyFL as a fault localizer. ARepair uses a sketch-
based approach: based on the suspiciousness scores computed
by AlloyFL, ARepair selects suspicious nodes and replaces
them with holes. Then, a synthesizer tries to fill those holes to
produce a correct program. ICEBAR builds upon ARepair by
introducing an extra form of specification: a property-based
oracle that validates if the model respects some property. Using
this oracle, ICEBAR iteratively increases the set of test cases
used by ARepair, improving the quality of the repairs and
reducing overfitting.

ATR [43] is a repair tool for Alloy that uses FLACK as a fault
localizer. ATR uses pairs of counterexamples and closely related
satisfying instances. Based on these pairs, ATR constructs
candidate repairs in a bottom-up manner. Finally, ATR tries to
replace the suspicious statements produced by FLACK with
these candidates.

VIII. CONCLUSION

This paper proposes FormHe, a fault localization and
program repair tool for ASP that combines logic techniques
with machine learning. FormHe helps students who are using
declarative languages for the first time and do not have the
intuition necessary to use other forms of debugging. FormHe
assists them in finding and correcting faults in their programs
by providing automatic and personalized feedback. FormHe can
offer valuable insights to students by correctly identifying faults
in 94% of incorrect submissions and providing repair hints in
56% of cases. Furthermore, even when the fault localization
and repair are unsuccessful, FormHe can still provide students
with a failing example that points them in the right direction.

All techniques proposed in the paper will be deployed in a
real scenario in this year’s classes. Preliminary results presented
in this paper show that integrating logic-based methods and
Large Language Models (LLMs) can boost automated fault
localization and program repair in declarative programming.
Moreover, the strengths of both logic-based methods and LLMs
are complementary and improve upon using just one approach.

APPENDIX
A. Computing MSICSs

Consider again the program with hard and soft clauses
presented in Figure 3b. Soft clauses are implemented with
the help of relaxation variables and an auxiliary aggregate rule.
The program below shows the full program after the relaxation
step (new parts highlighted in bold):

<|problem|>{Problem Title}
<|reference_program|>{Reference Program}
<|incorrect_program| >{Incorrect Program}

(a) Fault localization prompt.

<|problem|>{Problem Title}
<\reference_program\>{Reference Program}
<|incorrect_program|>{Incorrect Program}
<|fl|>{ACS Lines}

<|missing_lines|>{Yes or No}
<|correction|>

\ J

(b) Repair prompt.

Fig. 10: LLM input prompts for the fault localization and repair
modules.

I v(X) :— e(X,_), _x0.

2 v(X) :— e(,X), _rl.

3 k { sel(X) : v(X) } k := _r2.

4 :— not sel(X), not sel(Y), e(X,Y), _r3.
5 #const k = 3.

6 e(l,2).

7 sel(2).

8

0{ _r0; rl; r2; _r3} 4.

In this program, each of the first 4 rules is only active when
the respective relaxation variable is derived. By iteratively
increasing the lower bound on the auxiliary aggregate rule, we
can find a minimal set of rules that need to be removed or
modified so that the failing example can become correct. More
details on the technique for computing MSICSs can be found
in the paper by Mencia and Marques-Silva [11].

B. Fine-tuning Methodology

Figures 10a and 10b show the prompts used for finetuning
the fault localization and repair models, respectively. In these
prompts, the strings < | ... | > each refer to a custom token added
to the models’ embeddings. This improves ease of training and
sligthly decreases the LLM’s response time (by decreasing the
total number of tokens). For the finetuning of our models, we
used 4 epochs, a learning rate of 10~4, batch size of 1 to 8
(depending on VRAM requirements), gradient accumulation, a
LoRA r value of 8, LoRA alpha of 8 and LoRA dropout of
0.05.

The fault localization model was trained using Multi Label
Sequence Classification, where each label X from 1 to
MAX_LINES represents if line number X is faulty or not.
Although not mentioned in the main paper, we also include an
extra label representing if the program has missing lines.

The repair model was trained using Supervised Finetuning.
Besides the inputs mentioned in the main paper, the repair
prompt also receives information about if the program has
missing lines or not. This information comes directly from the
extra label in the fault localization model.
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